Twist-controlled resonant tunnelling in graphene/boron nitride/graphene heterostructures.

نویسندگان

  • A Mishchenko
  • J S Tu
  • Y Cao
  • R V Gorbachev
  • J R Wallbank
  • M T Greenaway
  • V E Morozov
  • S V Morozov
  • M J Zhu
  • S L Wong
  • F Withers
  • C R Woods
  • Y-J Kim
  • K Watanabe
  • T Taniguchi
  • E E Vdovin
  • O Makarovsky
  • T M Fromhold
  • V I Fal'ko
  • A K Geim
  • L Eaves
  • K S Novoselov
چکیده

Recent developments in the technology of van der Waals heterostructures made from two-dimensional atomic crystals have already led to the observation of new physical phenomena, such as the metal-insulator transition and Coulomb drag, and to the realization of functional devices, such as tunnel diodes, tunnel transistors and photovoltaic sensors. An unprecedented degree of control of the electronic properties is available not only by means of the selection of materials in the stack, but also through the additional fine-tuning achievable by adjusting the built-in strain and relative orientation of the component layers. Here we demonstrate how careful alignment of the crystallographic orientation of two graphene electrodes separated by a layer of hexagonal boron nitride in a transistor device can achieve resonant tunnelling with conservation of electron energy, momentum and, potentially, chirality. We show how the resonance peak and negative differential conductance in the device characteristics induce a tunable radiofrequency oscillatory current that has potential for future high-frequency technology.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Theory of resonant tunneling in bilayer-graphene/hexagonal-boron-nitride heterostructures

A theory is developed for calculating vertical tunneling current between two sheets of bilayer graphene separated by a thin, insulating layer of hexagonal boron nitride, neglecting many-body effects. Results are presented using physical parameters that enable comparison of the theory with recently reported experimental results. Observed resonant tunneling and negative differential resistance in...

متن کامل

Temperature-triggered chemical switching growth of in-plane and vertically stacked graphene-boron nitride heterostructures

In-plane and vertically stacked heterostructures of graphene and hexagonal boron nitride (h-BN-G and G/h-BN, respectively) are both recent focuses of graphene research. However, targeted synthesis of either heterostructure remains a challenge. Here, via chemical vapour deposition and using benzoic acid precursor, we have achieved the selective growth of h-BN-G and G/h-BN through a temperature-t...

متن کامل

Pressure-induced commensurate stacking of graphene on boron nitride

Combining atomically-thin van der Waals materials into heterostructures provides a powerful path towards the creation of designer electronic devices. The interaction strength between neighbouring layers, most easily controlled through their interlayer separation, can have significant influence on the electronic properties of these composite materials. Here, we demonstrate unprecedented control ...

متن کامل

Gate-tunable resonant tunneling in double bilayer graphene heterostructures.

We demonstrate gate-tunable resonant tunneling and negative differential resistance in the interlayer current-voltage characteristics of rotationally aligned double bilayer graphene heterostructures separated by hexagonal boron nitride (hBN) dielectric. An analysis of the heterostructure band alignment using individual layer densities, along with experimentally determined layer chemical potenti...

متن کامل

Vertical transport in graphene-hexagonal boron nitride heterostructure devices

Research in graphene-based electronics is recently focusing on devices based on vertical heterostructures of two-dimensional materials. Here we use density functional theory and multiscale simulations to investigate the tunneling properties of single- and double-barrier structures with graphene and few-layer hexagonal boron nitride (h-BN) or hexagonal boron carbon nitride (h-BC2N). We find that...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nature nanotechnology

دوره 9 10  شماره 

صفحات  -

تاریخ انتشار 2014